EPFL- Fall 2024 Differential Geometry 1V: G. Moschidis
SOLUTIONS: Series 1 General Relativity 12 Sep. 2024

1.1 Let V be an n-dimensional vector space and m : V x V' — R a Lorentzian inner product on V.
Recall that, for any timelike vector v € V', we have defined

vl = v/ =m(v,v)
(a) Let v € V be a timelike vector in V. Show that the hyperplane
vt ={w eV : mv,w) =0}
is a spacelike subspace of V.

(b) Show that that, for any two timelike vectors v,w € V, the inverse Cauchy-Schwarz in-
equality
Im(v, w)| = [vl[w]
and (in the case v,w belong to the same component of the timelike cone I) the inverse
triangle inequality
v+ w| = [v] + |wl

hold, with equality only in the case when v and w are collinear.

Solution. (a) In order to show that v! is a spacelike subspace, we merely have to show that the

restriction of the inner product m on v is positive definite, namely that
m(w,w) >0 for all we v\ 0. (1)

Assume that, in a given orthonormal basis {eg, ey, ..., e,-1} of V (with the convention that m(eg, ey) =
—1 and m(e;,e;) = +1 for ¢ > 1), the components of the vector v are (v°,...,v"1); then the fact
that v is timelike translates into

n—1

m(v,v) <0 —(°)*+) (1)’ <0.

i=1

Thus,
n—1 1

(D) < 1) 2)

i=1

which implies that

0% >0 (3)
(since v # 0 by our convention for timelike vectors)
If w= (w’w!,...,w" ") belongs to v\ 0 then

n—1
0 =m(v,w) = —0"w’ + Z v’
i=1
Moving the term v°w? to the left hand side and using the Cauchy—Schwarz inequality, we can therefore
bound
n—1
|00 = ‘ Zviwi
i=1

We can now distinguish two cases:

< (nZ(u‘)?)5 (iwf)? (4)

1= 1=
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1. If w® = 0, then w is necessarily spacelike, since

m(w,w) = —(w’)? + i(wi)z = i(wz)Q >0

(since we assumed that w # 0).

2. If w® # 0, the bound (2) implies that

(Sw) ool <oty )

Moreover, the left hand side of (4) in this case cannot be equal to 0 (recall (3)), thus the right
hand side of (4) cannot vanish; this implies that

(Swr)t =0

Combining (4) and (5) we therefore obtain

f
—_
f
—_

n—1

()t < (02

=1 =

[V
/
—
EHA
SN~—
o
N——
=

H

-
I

—

from which we infer (after dividing with (Z?:f (vi)2> *) that

D=

'] < (3o ?)’,

i=1
which is equivalent to m(w,w) > 0.

(b) Let A € R be the unique number such that w— v € vt; by solving the equation m(w—\v,v) =

0, we readily calculate
_ m(w,v)
m(v,v)
In view of part (a) of this exercise, A # 0 (since two timelike vectors cannot be perpdendicular to
each other) and the vector @ = w — \v is spacelike (since it belongs to v). Therefore,

0 < m(w,w)
=m(w — A, w — \v)
= m(w,w) — 2Am(v,w) + A*m(v,v)
=m(w m<v’w)mvw m(w,v) m(v,v
= m{w,w) = m(v,v) (v, )+<m(v,v)> (v,v)

Page 2



Differential Geometry IV:

EPFL- Fall 2024 G. Moschidis

SOLUTIONS: Series 1 General Relativity 12 Sep. 2024
2
— m(w,w) — (m(v, w))
m(v,v)

Thus (since m(w,w), m(v,v) < 0),
(m(v,w))* > (=m(v, v))(=m(w, w)),

with equality only if w =0 = w = \v.
If v, w lie on the same timecone, then v + w is also a timelike vector and m(v,w) < 0. We can
then compute:

v+ w* = —m(v+w,v + w)
= —m(w,w) — 2m(v,w) — m(v,v)

= |w|? = 2m(v,w) + |v|%.
Noting that —m(v,w) = |m(v,w)| since v, w belong to the same timecone, we infer:

v+ w? = [w]® + 2|m(v, w)| + |v]?
> w|® + 2Jv|jw| + |v],

where, in the last line above, we made use of the inverse Cauchy—Schwarz inequality that we estab-
lished earlier. Thus,

v+ w| > [o] + |w],

with equality holding only in the case when the Cauchy-Schwarz inequality used for v, w becomes
an equality.

1.2 Let V be an (n + 1)-dimensional vector space equipped with a Lorentzian inner product m.

(a) Prove that any two null vectors v, w of V' that are orthogonal are also collinear.

(b) Prove that if v and w are causal vectors that are orthogonal, then they have to be null
and collinear.

(c) Prove that if v is a null vector, then its orthogonal complement
vt ={weV: m,w) =0}
is a null hyperplane containing v.

Solution. (a) First, we will pick an orthonormal basis for V' in which the expression for one of the
vectors (say v) becomes the simplest possible: Let eq be a unit timelike vector (i.e. m(eg,eq) = —1)
in the same component of the timecone as v (i.e. m(eg,v) < 0; recall that, as we proved in class, any
vector orthogonal to a timelike vector must be spacelike, therefore we cannot have m(eg,v) = 0).

Note that the vector ]

r = —€y — W’U (6)
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is orthogonal to ey and satisfies

1
m(z,z) = m(eo + mieo. U)v, eo + mv)
1
= m(eo, 60) + m?ﬂ(@o, U) + WW(U7 U)
—1,

i.e. the pair {eg,z} is orthonormal. Therefore, if we set
€1 =7,

we can use the Gram—Schmidt process to extend {eg, €1} to an orthonormal basis {e,}"_, of V; since
ep is timelike and m has signature (1,n), the vectors {e;}.; are necessarily spacelike. Moreover, in
view of (6)

v =—m(eg,v)(eo + €1),

i.e. in the {e,}?_, basis v takes the form
v=(\A\0,...,0),

where A = —m(eg,v) > 0.

Remark. In general, when confronted with calculations in some Lorentzian inner product space
(i.e. the tangent space T,,M at a point p of a Lorentzian manifold (M, g)), it is always useful to be
able to choose an orthonormal basis adapted to the vectors in question; we can always choose an
orthonormal basis where ¢, is parallel to a given timelike vector or, as shown here, ey + e is parallel

to a given null vector.

Let w = (w’ ...,w") € V'\ 0 be a vector such that v 1 w. We can then calculate (since {e,}"_, is

an orthonormal basis and hence, in this basis, m = diag(—1,+1,...,+1)):
0=m(v,w) = —0"w" + Zviwi = A(—w’ +wh).
i=1

Thus, since A = —m/(eg, v) # 0, we conclude
w’ = w'. (7)
If the vector w is causal, i.e. m(w,w) < 0, then

0> m(w,w)
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and, therefore,

wr=...=uw"=0.

Thus, w is of the form w = (w° w?,0,...,0) and is therefore null and collinear with v = (A, A, 0,...,0).

(b) As we have shown in class, any vector which is orthogonal to a timelike vextor is spacelike.
Therefore, that none of the vectors v,w can be timelike (since then the other would have to be
spacelike, i.e. non-causal). Therefore, v and w are null, so from part (a) of this exercise we infer that
they are collinear.

(¢) By our convention for a null vector, v # 0. Thus, the linear functional v, = m(v,-) : V.— 0
cannot be identically zero (since m is non-degenerate), therefore its kernel (which is precisely v+) is
of codimension 1 (i.e. it is a hyperplane). Moreover, since v is null, m(v,v) = 0 and, thus, v € VL.

In order to show that v* is a null hyperplane, it remains to show that m/|,. is degenerate, i.e. that
there exists a vector L # 0 in v* such that m(L,x) = 0 for all x € v*. Tt is clear from the definition
of vt that L = v has exactly this property.

Remark. In the basis {e,}”_, constructed in part (a) of this exercise, where v || eg + €1, the space
vt is spanned by the vectors {eg+ey, e, ..., e,}. Using those vectors as a basis for v, the associated
matrix of the inner product m|,. on vt takes the form m = diag(0,+1,...,+1).

1.3 Let M be a differentiable manifold of dimension n and p € M. Recall that the tangent space
T,M at p is defined as the set of all functionals X : C*(M) — R satisfying the product rule

X(f-9)=X(f)-9p)+ flp) X(9).

Prove that the set 7,M is a vector space of dimension n. (Hint: Use the fact that, in any
given local coordinate chart ¢ : U — ¢(U) C R™ on a neighborhood U around p with ¢(p) =0,
any smooth function f : ¢(U) — R can be expanded as f(x) = f(0) + Ayz® + Bay(x)x%2® for
constants {Ay}o—, and smooth functions {Bu(2)}y —1-)

Remark. This exercise is in fact a standard theorem in the study of differentiable manifolds. In
order to solve it properly, we will reprove a number of fundamental results from that field (such as
the fact that Z,(f) = 0 for any Z, € T, M when the function f € C°°(M) is constant in an open
neighborhood of the point p € M). The aim of the exercise is to remind you of those results; you
should be able to use them without having to reprove them in the rest of the exercises of this course.

Solution. The fact that 7, M is a vector space follows easily by its definition: If XY € T, M and
A € R, then the linear functional X + \Y : C*°(M) — R, defined by

(X +AY)(f) = X(f) +A-Y(f)
also belongs to T, M, i.e. it satisfies the product rule, since

(X+AY)(f-9)=X(f-9)+A-Y(f9)
= X(f)-g9(p) + f(p)- X(g9) + AY(f) - g(p) + X~ f(p) - Y(9)
= (X +AY)(f) - g(p) + f(p) - (X +AY)(g).
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Let ¢ : U — ¢(U) C R™ be a local coordinate chart around p, with associated coordinates

(x',...,2™); recall that the coordinate functions z* : U — R are defined as

' =7 o ¢,
where Z° : R* — R are the Cartesian projections on the i-th coordinate. Let us also fix a smooth
function y : M — R satisfying the following properties:
e x(q¢) =1 in an open neighborhood of p,
e supp is compact and contained in U.

Such a function can be readily constructed on ¢(U) C R", and then pulled-back to U via ¢ and
extended to 0 on M \ U.
We will use the following fundamental results:

e If f =cis a constant function on M, then Z,(f) = 0 for all Z, € T, M; this can be shown by
arguing as follows: Using the fact that Z, : C>°(M) — R is a linear functional, it suffices to
show that Z,(1) = 0; using the product rule for Z,, we can calculate

Zy(1) = Z,(1-1) = Z,(1) - 1(p) + 1(p) - Z,(1) = 22,(1) &  Z,(1) =0,

o Let ¢ € C°(M) be such that 1(q) = 1 for all ¢ belonging to an open neighborhood W of p.
Then, for all Z, € T,M:

Zy(¥) = 0.

This can be shown by first introducing an auxiliary function x’ € C*°(M) supported in WNU
and satisfying y/(p) = 1. We can then calculate (since suppy’ C W and ¢ =1 on W)

e As a consequence of the previous result, if f € C>°(M) and y : M — R is the cut-off function
introduced earlier, then we have for any Z, € T, M:

Zp(f) = Zp(x - f+ (L =x)- ) = Zp(x - f) (8)
since 1 — y vanishes in an open neighborhood of p and thus 1 — x(p) = 0 = Z,(1 — x).

e A tangent vector Z, € T,M can also be viewed as a linear function Z, : C*°(U) — R, namely
as a functional on the space of smooth functions defined only on /. This is because, for any
h € C*>(U), we can define the function E,h € C°°(M) by the relation

~ Jx(@)h(q), when qelU,
Eh(q) = {07 ge M\ U
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(Ex: show that suppx C U implies that E, (h) is smooth on M). Therefore, we can simply
define for any Z, € T,M:
Zp(h) = Zy(Exh).

Note that, as a consequence of the previous remarks, the value of Z,(h) for h € C®(U) is
independent of the choice of the cut-off function y since, for any two functions xy, x» which are
both equal to 1 in an open neighborhood W of p, E,,h — E,,h vanishes on W and, hence

Zp(Ey,h — Ey,h) = 0.

Moreover, (8) implies that if h = f|;, then

Therefore,

Zy(h) =0forall h € C®U) <« Z,(f)=0forall f € C®(M).

We will now proceed to show that dim 7, M = n.
o We will first show that dim7, M > n. To this end, it suffices to show that the coordinate tangent

n
vectors {a%} at p are linearly independent. Recall that azi satisfies at p:
i=1
9 ‘
ErS (7)) = 0].
n
Suppose, for the sake of contradiction, that { aii} are linearly dependent at p, i.e. there exist
i=1
constants A!,..., A" € R, not all identically zero, such that
i 0 _
ox?

(recall that repeated indices are assumed to be summed over their domain of definition, which here
isi € {l,...,n}). We then have, for any j € {1,...,n},

-0 . o .
0= )\l%(l’J) = )\Z(SZ =\,
. n
Hence, all M’s have to vanish, which is a contradiction; the tangent vectors { 621-} are therefore
i=1

linearly independent.

o We will now show that dim7, M < n. To this end, it suffices to show that any X € T, M can be

0
ox?

written as a linear combination of { } ; in particular, we will show that
i=1

_ 0
oxt’

X = X (2%
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or, equivalently, that

V=X-X(') - =0. 9
(@) 2 )
Note that
Y(2?) = X(27) — X (2") - 8—(x]) =0 forallje{l,...,n}. (10)
xl
In order to establish (9), it suffices to show that
Y(f)=0 forall feC®U). (11)

Let f € C(U) and let us consider the function f o ¢! : ¢(U) C R® — R. Applying Taylor’s
expansion theorem for f o ¢~! around the point p = ¢(p) = (z'(p),...,2"(p)) € R", we can express
express foo ! as

foo™(z) = fo¢  (p) + AT —a'(p)) + Bij(2)(z" — 2" (p)) (&7 — 27 (p)),

where 7' are the Cartesian coordinates on ¢(U) C R*, {A;};-, are constants and {By;(-)}},_, are
smooth functions on ¢(U). Composing the above expression with ¢, we obtain on U:

f=flp)+ A(a" —2'(p)) + Bijo ¢ (z — 2" (p))(2? — 27(p)).

Applying the product rule and using the fact that Y'(¢) = 0 for all constant functions ¢ and Y (z') = 0
for all the coordinate functions z* (see (10)), we obtain

Y(f) = Y(f(p)) + Y(Ai(ﬁi - xl(p))) + Y<Bij °Q- (352 - 931(29))(93] - xj(
=Y (f(p)+Ai- (Y(2')=Y(2'(p) +Y(Bij09) - («'(p) — z"(p))(x
+ Bij o ¢(p) - Y (a' — 2’ (p)) (2’ (p) — 27 (p)) 4 Bij 0 p(p) - (2’

S
|
&N
S
=
8
<
3
|
&
<
=
S~—
S~—

= 0.
Therefore, (11) holds.

1.4 Let M™ be a differentiable manifold and V be a smooth vector field on M. Assume that
V(p) # 0 for some p € M. Show that there exists an open neighborhood U of p and a
coordinate chart (z!,...,2") on U such that V = 5% in U.

Solution. Let us start by fixing a coordinate chart ¢' : U’ — ¢/(U’') C R™ on an open neighborhood
U' of pin M. By composing ¢’ on the left with a translation y — y+1o in R", we can assume without
loss of generality that ¢'(p) = 0. Let (y',...,y") be the local coordinate system on U’ associated to ¢
(note that y'(p) = 0 for i = 1,...,n). In this coordinate system, the vector field V can be expressed

as 3
V=V_—.
oyt
Since V(p) # 0, at least one of the components V(p) must ne non-zero; without loss of generality
we can assume that V1(p) # 0 (otherwise, we can simply relabel the coordinate functions). Since V
is a smooth vector field, V1(p) # 0 in an open neighborhood W of p.
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We will construct the coordinate system (z!,...,2") by introducing an appopriate change of

coordinates on a neighborhood of 0 in R” and then pulling back these new coordinates to M via the
chart ¢/. More precisely, let W :V C R* — V' C ¢'(U’') be a diffeomorphism between subsets of R".
Then, it is easy to verify that, in the local coordinate system (z',...,2") on (¢/)"*(V') cU' Cc M
associated to the coordinate chart ¢ = ¥~'o(¢/)~! on (¢/)~}(V),! the coordinate vector fields {2 }7,

can be expressed in terms of {8iyi ?_, by the relation

0 o,
= AP ——
oz’ o oyJ

(since the expression of the coordinates y* as functions of 2 is y* = W'(z)). Therefore, in order to
construct a local coordinate system (z',..., 2™) around p in which V = %, it suffices to construct

a smooth function ¥ : W — R" for a domain V C R" containing 0 such that:
1. ¥(0) =0,
2. DV|,— is invertible,
3. 10" =V'0(¢)"t oW in an open neighborhood ¥V C W of 0.

In view of the inverse function theorem, Condition 2 above would imply that ¥ is a local diffeo-
morphism when restricted to a (possibly small) open neighborhood V of 0. Since 0 € ¢'(U’) and
U(0) = 0 (according to Condition 1), by possibly choosing V even smaller, we can guarantee that
U(V) C ¢'(U'); hence Vio (¢/)7 o W (in the statement of Condition 3) would be a well defined
function on V.

In order to construct a local diffeomorphism W as above, we will make use of the flow map
associated to the vector field V = (Vo (¢)7%,..., V"o (¢')7!) on ¢'(U’') C R™ (note that this is
simply the pushforward of the vector field V' via the map ¢'). For a smooth vector field V' defined
on an open domain €2 of R", the classical theory of ODEs guarantees the existence of an open set
Q C R x Q containing {0} x Q and a smooth map ¥ : Q — Q such that

{(?t\i/(t;x) = V(U(t; 7)), (12)
U(0;z) = 7.

this statetement can be equivalently stated in a more familiar language as follows: The initial value
y guag
problem

Or =V (z),
ZL‘(O) =1x0 € ()

admits a unique smooth solution x|z, | : I, — € on a maximal open interval I, C R containing 0;
moreover, x|z, ] and I, depend smoothly on the initial value x.)

'Recall that, in this case, x* = (¥ ~1)? 0 ¢; thus, y* = (¢')' = (Vo U~ Lo ¢') = (¥(2))".
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Let W : © — R” be the map obtained by applying the above result with Q = ¢/(U’). Let § > 0
be small enough so that (—d,d) x Bs[0] C Q (where Bg”) [0] is the Euclidean ball around 0 € R™ of
radius ). Let us consider the map ¥ : (—§,0) x Bgnil)[()] — R" defined by

Uz, .. 2") = \I/(xl;O,xQ, co,x)

(this is simply the map that takes each point on the surface {z' = 0} N Bs[0]™ and maps it to its
image under the flow of the vector field V for time ¢ = z'). In view of (12), we can readily compute:

1. W(0) = ¥(0; 0) = 0.
2. We can calculate at (z',...,2") = (0,...,0):
W (0) = 0 (12", ..., 2™)|(tar,.om)=(00,.0) = VI(0) forj=1,....n
and, for ¢ > 2:

0,07 (0) = 0 W (13", .., 2™t . em)=(00.....0)
= 6.

Therefore, the matrix of the differential DU at 0 takes the form

Vi(0) VZ(0) V(o)

1 0 ... 0
(D)o =| O L0,
00 1

which is invertible since V1(0) = V1(p) # 0.

3. We have everywhere on (—6,8) x B V[0]:

81\11($1, e ,l’n) = atil(t, jl, Ce ,fn)|(t;jljQ’m’jn):(ml;07x27_._7$n)
= V(\Tf(xl, 0,22,... ,x”))
= V(\If(xl, , ")

and, hence
OV =VioW=Vio(¢)tol.

Therefore, setting V = (—0,0) X B(g”_l)[O], the map W defined above satisfies Conditions 1-3; hence,
as explained earlier, ¢ = U=t o ¢ : (¢/)"H(¥(V)) C U’ — V is a coordinate chart around p in which

0

da!

=V
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1.5 Let X, Y, Z be smooth vector fields on a differentiable manifold M. We define the commutator
(or Lie bracket) [X,Y] of X and Y to be the vector field satisfying for any function f € C*°(M)

(X, Y](f) = X(Y () = Y (X(/))-
(a) Show that [X Y] satisfies the following identities:
1. [X,Y] = -]V, X] (anticommutativity).
2. [X,aY +0Z] = alX,Y] + b[X, Z] for any constans a, b (linearity).
3. [[X,Y], Z]+ [[Y, Z], X] + [[Z, X], Y] = 0 (Jacobi identity).

(b) Let X® and Y? be the components of X and Y, respectively, in a local coordinate chart

(z,...,2")on M (ie. X = X% and Y =Y aia) Compute the components of [X, Y]

in the same coordinate chart.

Solution. (a) Let us first verify that indeed [X,Y] is a vector field on M (recall that a vector
field Z is simply an assignment p — Z, for all p € M such that Z, : C*°(M) — R is a linear
functional satisfying the product rule; note that, for any f € C°(M), Z(f) then defines a smooth
function p — Z,(f)). To this end, we simply have to verify that, for any point p € M, the functional
[X,Y], : C®°(M) — R defined by

(XY, (f) = X,(Y(f)) = Yo(X(f))
is linear (which is obvious) and satisfies the product rule. Indeed, for any f,h € C*°(M):

PCY]p(f‘h) = Xp(Y(f - h) = Yp(X(f - h))
Xp(Y () -ht f-Y(R) = Yo (X(f)-h+ |- X(R))
Xp(Y(f) - h(p) + Y5 (f) - Xp(h) + Xp(/)Yp(h) + f(p) Xp(Y(R)
—Yp(X(f)) h(p) = Xp(f) - Yo(h) = V() Xp(h) — () (X (h
= (X,(Y(f) = Y(X(f))) - (p) + f(p) - (X, (Y (h)) = Yo (X (h))
where, above, we made use of the fact that the functionals X,Y : C*°(M) — C‘X’(/\/l) and X,V :
C>°(M) — R satisfy the product rule.

Identities 1-3 follow easily by using the definition of [X,Y] and the fact that any vector field
X on M defines a linear function X : C°(M) — C>*(M) satisfying the product rule X(f -g) =

X(f)-g9+1-X(g).
(b) We can readily calculate in the (z!,..., 2™) coordinates:

[Xv Y]i = [Xv Y] xl)

)
)
)

)




