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1.1 Let V be an n-dimensional vector space and m : V × V → R a Lorentzian inner product on V .
Recall that, for any timelike vector v ∈ V , we have de�ned

|v| .=
√
−m(v, v)

(a) Let v ∈ V be a timelike vector in V . Show that the hyperplane

v⊥
.
=

{
w ∈ V : m(v, w) = 0

}
is a spacelike subspace of V .

(b) Show that that, for any two timelike vectors v, w ∈ V , the inverse Cauchy�Schwarz in-
equality

|m(v, w)| ⩾ |v||w|
and (in the case v, w belong to the same component of the timelike cone I) the inverse
triangle inequality

|v + w| ⩾ |v|+ |w|
hold, with equality only in the case when v and w are collinear.

Solution. (a) In order to show that v⊥ is a spacelike subspace, we merely have to show that the
restriction of the inner product m on v⊥ is positive de�nite, namely that

m(w,w) > 0 for all w ∈ v⊥ \ 0. (1)

Assume that, in a given orthonormal basis {e0, e1, . . . , en−1} of V (with the convention thatm(e0, e0) =
−1 and m(ei, ei) = +1 for i ⩾ 1), the components of the vector v are (v0, . . . , vn−1); then the fact
that v is timelike translates into

m(v, v) < 0 ⇔ −(v0)2 +
n−1∑
i=1

(vi)2 < 0.

Thus, ( n−1∑
i=1

(vi)2
) 1

2
< |v0| (2)

which implies that
|v0| > 0 (3)

(since v ̸= 0 by our convention for timelike vectors)
If w = (w0, w1, . . . , wn−1) belongs to v⊥ \ 0 then

0 = m(v, w) = −v0w0 +
n−1∑
i=1

viwi.

Moving the term v0w0 to the left hand side and using the Cauchy�Schwarz inequality, we can therefore
bound

|v0w0| =
∣∣∣ n−1∑
i=1

viwi
∣∣∣ ⩽ ( n−1∑

i=1

(vi)2
) 1

2
( n−1∑

i=1

(wi)2
) 1

2
. (4)

We can now distinguish two cases:
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1. If w0 = 0, then w is necessarily spacelike, since

m(w,w) = −(w0)2 +
n−1∑
i=1

(wi)2 =
n−1∑
i=1

(wi)2 > 0

(since we assumed that w ̸= 0).

2. If w0 ̸= 0, the bound (2) implies that

( n−1∑
i=1

(vi)2
) 1

2 |w0| < |v0w0|. (5)

Moreover, the left hand side of (4) in this case cannot be equal to 0 (recall (3)), thus the right
hand side of (4) cannot vanish; this implies that

( n−1∑
i=1

(vi)2
) 1

2
> 0.

Combining (4) and (5) we therefore obtain

( n−1∑
i=1

(vi)2
) 1

2 |w0| <
( n−1∑

i=1

(vi)2
) 1

2
( n−1∑

i=1

(wi)2
) 1

2
,

from which we infer (after dividing with
(∑n−1

i=1 (v
i)2

) 1
2
) that

|w0| <
( n−1∑

i=1

(wi)2
) 1

2
,

which is equivalent to m(w,w) > 0.

(b) Let λ ∈ R be the unique number such that w−λv ∈ v⊥; by solving the equationm(w−λv, v) =
0, we readily calculate

λ =
m(w, v)

m(v, v)
.

In view of part (a) of this exercise, λ ̸= 0 (since two timelike vectors cannot be perpdendicular to
each other) and the vector w̃ = w − λv is spacelike (since it belongs to v⊥). Therefore,

0 ⩽ m(w̃, w̃)

= m(w − λv, w − λv)

= m(w,w)− 2λm(v, w) + λ2m(v, v)

= m(w,w)− 2
m(v, w)

m(v, v)
m(v, w) +

(m(w, v)

m(v, v)

)
m(v, v)
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= m(w,w)− (m(v, w))2

m(v, v)
.

Thus (since m(w,w),m(v, v) < 0),

(m(v, w))2 ⩾ (−m(v, v))(−m(w,w)),

with equality only if w̃ = 0 ⇒ w = λv.
If v, w lie on the same timecone, then v + w is also a timelike vector and m(v, w) < 0. We can

then compute:

|v + w|2 = −m(v + w, v + w)

= −m(w,w)− 2m(v, w)−m(v, v)

= |w|2 − 2m(v, w) + |v|2.

Noting that −m(v, w) = |m(v, w)| since v, w belong to the same timecone, we infer:

|v + w|2 = |w|2 + 2|m(v, w)|+ |v|2

⩾ |w|2 + 2|v||w|+ |v|2,

where, in the last line above, we made use of the inverse Cauchy�Schwarz inequality that we estab-
lished earlier. Thus,

|v + w| ⩾ |v|+ |w|,

with equality holding only in the case when the Cauchy�Schwarz inequality used for v, w becomes
an equality.

1.2 Let V be an (n+ 1)-dimensional vector space equipped with a Lorentzian inner product m.

(a) Prove that any two null vectors v, w of V that are orthogonal are also collinear.

(b) Prove that if v and w are causal vectors that are orthogonal, then they have to be null

and collinear.

(c) Prove that if v is a null vector, then its orthogonal complement

v⊥ =
{
w ∈ V : m(v, w) = 0

}
is a null hyperplane containing v.

Solution. (a) First, we will pick an orthonormal basis for V in which the expression for one of the
vectors (say v) becomes the simplest possible: Let e0 be a unit timelike vector (i.e. m(e0, e0) = −1)
in the same component of the timecone as v (i.e. m(e0, v) < 0; recall that, as we proved in class, any
vector orthogonal to a timelike vector must be spacelike, therefore we cannot have m(e0, v) = 0).
Note that the vector

x = −e0 −
1

m(e0, v)
v (6)
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is orthogonal to e0 and satis�es

m(x, x) = m
(
e0 +

1

m(e0, v)
v, e0 +

1

m(e0, v)
v
)

= m(e0, e0) +
2

m(e0, v)
m(e0, v) +

1

(m(e0, v))2
m(v, v)

= 1,

i.e. the pair {e0, x} is orthonormal. Therefore, if we set

e1 = x,

we can use the Gram�Schmidt process to extend {e0, e1} to an orthonormal basis {eα}nα=0 of V ; since
e0 is timelike and m has signature (1, n), the vectors {ei}ni=1 are necessarily spacelike. Moreover, in
view of (6)

v = −m(e0, v)
(
e0 + e1

)
,

i.e. in the {eα}nα=0 basis v takes the form

v = (λ, λ, 0, . . . , 0),

where λ = −m(e0, v) > 0.

Remark. In general, when confronted with calculations in some Lorentzian inner product space
(i.e. the tangent space TpM at a point p of a Lorentzian manifold (M, g)), it is always useful to be
able to choose an orthonormal basis adapted to the vectors in question; we can always choose an
orthonormal basis where e0 is parallel to a given timelike vector or, as shown here, e0 + e1 is parallel
to a given null vector.

Let w = (w0, . . . , wn) ∈ V \ 0 be a vector such that v ⊥ w. We can then calculate (since {eα}nα=0 is
an orthonormal basis and hence, in this basis, m = diag(−1,+1, . . . ,+1)):

0 = m(v, w) = −v0w0 +
n∑

i=1

viwi = λ(−w0 + w1).

Thus, since λ = −m(e0, v) ̸= 0, we conclude

w0 = w1. (7)

If the vector w is causal, i.e. m(w,w) ⩽ 0, then

0 ⩾ m(w,w)

= −(w0)2 +
n∑

i=1

(wi)
2

(7)
=

n∑
i=2

(wi)
2
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and, therefore,
w2 = . . . = wn = 0.

Thus, w is of the form w = (w0, w0, 0, . . . , 0) and is therefore null and collinear with v = (λ, λ, 0, . . . , 0).

(b) As we have shown in class, any vector which is orthogonal to a timelike vextor is spacelike.
Therefore, that none of the vectors v, w can be timelike (since then the other would have to be
spacelike, i.e. non-causal). Therefore, v and w are null, so from part (a) of this exercise we infer that
they are collinear.

(c) By our convention for a null vector, v ̸= 0. Thus, the linear functional v♭
.
= m(v, ·) : V → 0

cannot be identically zero (since m is non-degenerate), therefore its kernel (which is precisely v⊥) is
of codimension 1 (i.e. it is a hyperplane). Moreover, since v is null, m(v, v) = 0 and, thus, v ∈ V ⊥.

In order to show that v⊥ is a null hyperplane, it remains to show that m|v⊥ is degenerate, i.e. that
there exists a vector L ̸= 0 in v⊥ such that m(L, x) = 0 for all x ∈ v⊥. It is clear from the de�nition
of v⊥ that L = v has exactly this property.

Remark. In the basis {eα}nα=0 constructed in part (a) of this exercise, where v ∥ e0 + e1, the space
v⊥ is spanned by the vectors {e0+e1, e2, . . . , en}. Using those vectors as a basis for v⊥, the associated
matrix of the inner product m|v⊥ on v⊥ takes the form m = diag(0,+1, . . . ,+1).

1.3 Let M be a di�erentiable manifold of dimension n and p ∈ M. Recall that the tangent space
TpM at p is de�ned as the set of all functionals X : C∞(M) → R satisfying the product rule

X(f · g) = X(f) · g(p) + f(p) ·X(g).

Prove that the set TpM is a vector space of dimension n. (Hint: Use the fact that, in any

given local coordinate chart ϕ : U → ϕ(U) ⊂ R
n on a neighborhood U around p with ϕ(p) = 0,

any smooth function f : ϕ(U) → R can be expanded as f(x) = f(0) + Aax
a + Bab(x)x

axb for

constants {Aa}na=1 and smooth functions {Bab(x)}na,b=1.)

Remark. This exercise is in fact a standard theorem in the study of di�erentiable manifolds. In
order to solve it properly, we will reprove a number of fundamental results from that �eld (such as
the fact that Zp(f) = 0 for any Zp ∈ TpM when the function f ∈ C∞(M) is constant in an open
neighborhood of the point p ∈ M). The aim of the exercise is to remind you of those results; you
should be able to use them without having to reprove them in the rest of the exercises of this course.

Solution. The fact that TpM is a vector space follows easily by its de�nition: If X, Y ∈ TpM and
λ ∈ R, then the linear functional X + λY : C∞(M) → R, de�ned by

(X + λY )(f)
.
= X(f) + λ · Y (f)

also belongs to TpM, i.e. it satis�es the product rule, since

(X + λY )(f · g) = X(f · g) + λ · Y (f · g)
= X(f) · g(p) + f(p) ·X(g) + λY (f) · g(p) + λ · f(p) · Y (g)

= (X + λY )(f) · g(p) + f(p) · (X + λY )(g).
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Let ϕ : U → ϕ(U) ⊂ R
n be a local coordinate chart around p, with associated coordinates

(x1, . . . , xn); recall that the coordinate functions xi : U → R are de�ned as

xi
.
= x̄i ◦ ϕ,

where x̄i : Rn → R are the Cartesian projections on the i-th coordinate. Let us also �x a smooth
function χ : M → R satisfying the following properties:

� χ(q) = 1 in an open neighborhood of p,

� supp is compact and contained in U .

Such a function can be readily constructed on ϕ(U) ⊂ R
n, and then pulled-back to U via ϕ and

extended to 0 on M\ U .
We will use the following fundamental results:

� If f = c is a constant function on M, then Zp(f) = 0 for all Zp ∈ TpM; this can be shown by
arguing as follows: Using the fact that Zp : C∞(M) → R is a linear functional, it su�ces to
show that Zp(1) = 0; using the product rule for Zp, we can calculate

Zp(1) = Zp(1 · 1) = Zp(1) · 1(p) + 1(p) · Zp(1) = 2Zp(1) ⇔ Zp(1) = 0.

� Let ψ ∈ C∞(M) be such that ψ(q) = 1 for all q belonging to an open neighborhood W of p.
Then, for all Zp ∈ TpM:

Zp(ψ) = 0.

This can be shown by �rst introducing an auxiliary function χ′ ∈ C∞(M) supported in W∩U
and satisfying χ′(p) = 1. We can then calculate (since suppχ′ ⊂ W and ψ ≡ 1 on W)

Zp(χ
′) = Zp(χ

′ · ψ)
= Zp(χ

′) · ψ(p) + χ′(p) · Zp(ψ)

= Zp(χ
′) + Zp(ψ)

⇒ Zp(ψ) = 0.

� As a consequence of the previous result, if f ∈ C∞(M) and χ : M → R is the cut-o� function
introduced earlier, then we have for any Zp ∈ TpM:

Zp(f) = Zp(χ · f + (1− χ) · f) = Zp(χ · f) (8)

since 1− χ vanishes in an open neighborhood of p and thus 1− χ(p) = 0 = Zp(1− χ).

� A tangent vector Zp ∈ TpM can also be viewed as a linear function Zp : C
∞(U) → R, namely

as a functional on the space of smooth functions de�ned only on U . This is because, for any
h ∈ C∞(U), we can de�ne the function Eχh ∈ C∞(M) by the relation

Eχh(q) =

{
χ(q)h(q), when q ∈ U ,
0, q ∈ M \ U
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(Ex: show that suppχ ⊂ U implies that Eχ(h) is smooth on M). Therefore, we can simply
de�ne for any Zp ∈ TpM:

Zp(h)
.
= Zp(Eχh).

Note that, as a consequence of the previous remarks, the value of Zp(h) for h ∈ C∞(U) is
independent of the choice of the cut-o� function χ since, for any two functions χ1, χ2 which are
both equal to 1 in an open neighborhood W of p, Eχ1h− Eχ2h vanishes on W and, hence

Zp(Eχ1h− Eχ2h) = 0.

Moreover, (8) implies that if h = f |U , then

Zp(h) = Zp(f).

Therefore,

Zp(h) = 0 for all h ∈ C∞(U) ⇔ Zp(f) = 0 for all f ∈ C∞(M).

We will now proceed to show that dimTpM = n.

◦ We will �rst show that dimTpM ⩾ n. To this end, it su�ces to show that the coordinate tangent

vectors
{

∂
∂xi

}n

i=1
at p are linearly independent. Recall that ∂

∂xi satis�es at p:

∂

∂xi
(xj) = δji .

Suppose, for the sake of contradiction, that
{

∂
∂xi

}n

i=1
are linearly dependent at p, i.e. there exist

constants λ1, . . . , λn ∈ R, not all identically zero, such that

λi
∂

∂xi
= 0

(recall that repeated indices are assumed to be summed over their domain of de�nition, which here
is i ∈ {1, . . . , n}). We then have, for any j ∈ {1, . . . , n},

0 = λi
∂

∂xi
(xj) = λiδji = λj.

Hence, all λj's have to vanish, which is a contradiction; the tangent vectors
{

∂
∂xi

}n

i=1
are therefore

linearly independent.

◦ We will now show that dimTpM ⩽ n. To this end, it su�ces to show that any X ∈ TpM can be

written as a linear combination of
{

∂
∂xi

}n

i=1
; in particular, we will show that

X = X(xi) · ∂

∂xi
,
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or, equivalently, that

Y
.
= X −X(xi) · ∂

∂xi
= 0. (9)

Note that

Y (xj) = X(xj)−X(xi) · ∂

∂xi
(xj) = 0 for all j ∈ {1, . . . , n}. (10)

In order to establish (9), it su�ces to show that

Y (f) = 0 for all f ∈ C∞(U). (11)

Let f ∈ C∞(U) and let us consider the function f ◦ ϕ−1 : ϕ(U) ⊂ R
n → R. Applying Taylor's

expansion theorem for f ◦ ϕ−1 around the point p̄ = ϕ(p) = (x1(p), . . . , xn(p)) ∈ R
n, we can express

express f ◦ ϕ−1 as

f ◦ ϕ−1(x̄) = f ◦ ϕ−1(p) + Ai(x̄
i − xi(p)) +Bij(x̄)(x̄

i − xi(p))(x̄j − xj(p)),

where x̄i are the Cartesian coordinates on ϕ(U) ⊂ R
n, {Ai}ni=1 are constants and {Bij(·)}ni,j=1 are

smooth functions on ϕ(U). Composing the above expression with ϕ, we obtain on U :

f = f(p) + Ai(x
i − xi(p)) +Bij ◦ ϕ · (xi − xi(p))(xj − xj(p)).

Applying the product rule and using the fact that Y (c) = 0 for all constant functions c and Y (xi) = 0
for all the coordinate functions xi (see (10)), we obtain

Y (f) = Y
(
f(p)

)
+ Y

(
Ai(x

i − xi(p))
)
+ Y

(
Bij ◦ ϕ · (xi − xi(p))(xj − xj(p))

)
= Y

(
f(p)

)
+ Ai ·

(
Y (xi)− Y (xi(p))

)
+ Y (Bij ◦ ϕ) · (xi(p)− xi(p))(xj(p)− xj(p))

)
+Bij ◦ ϕ(p) · Y (xi − xi(p))(xj(p)− xj(p)) +Bij ◦ ϕ(p) · (xi(p)− xi(p))Y (xj(p)− xj(p))

= 0.

Therefore, (11) holds.

1.4 Let Mn be a di�erentiable manifold and V be a smooth vector �eld on M . Assume that
V (p) ̸= 0 for some p ∈ M. Show that there exists an open neighborhood U of p and a
coordinate chart (x1, . . . , xn) on U such that V = ∂

∂x1 in U .

Solution. Let us start by �xing a coordinate chart ϕ′ : U ′ → ϕ′(U ′) ⊂ R
n on an open neighborhood

U ′ of p in M. By composing ϕ′ on the left with a translation y → y+y0 in R
n, we can assume without

loss of generality that ϕ′(p) = 0. Let (y1, . . . , yn) be the local coordinate system on U ′ associated to ϕ
(note that yi(p) = 0 for i = 1, . . . , n). In this coordinate system, the vector �eld V can be expressed
as

V = V i ∂

∂yi
.

Since V (p) ̸= 0, at least one of the components V i(p) must ne non-zero; without loss of generality
we can assume that V 1(p) ̸= 0 (otherwise, we can simply relabel the coordinate functions). Since V
is a smooth vector �eld, V 1(p) ̸= 0 in an open neighborhood W of p.
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We will construct the coordinate system (x1, . . . , xn) by introducing an appopriate change of
coordinates on a neighborhood of 0 in Rn and then pulling back these new coordinates to M via the
chart ϕ′. More precisely, let Ψ : V ⊂ R

n → V ′ ⊂ ϕ′(U ′) be a di�eomorphism between subsets of Rn.
Then, it is easy to verify that, in the local coordinate system (x1, . . . , xn) on (ϕ′)−1(V ′) ⊂ U ′ ⊂ M
associated to the coordinate chart ϕ = Ψ−1◦(ϕ′)−1 on (ϕ′)−1(V),1 the coordinate vector �elds { ∂

∂xi}ni=1

can be expressed in terms of { ∂
∂yi

}ni=1 by the relation

∂

∂xi
= ∂iΨ

j · ∂

∂yj

(since the expression of the coordinates yi as functions of xi is yi = Ψi(x)). Therefore, in order to
construct a local coordinate system (x1, . . . , xn) around p in which V = ∂

∂x1 , it su�ces to construct
a smooth function Ψ : W → R

n for a domain V ⊂ R
n containing 0 such that:

1. Ψ(0) = 0,

2. DΨ|x=0 is invertible,

3. ∂1Ψ
i = V i ◦ (ϕ′)−1 ◦Ψ in an open neighborhood V ⊂ W of 0.

In view of the inverse function theorem, Condition 2 above would imply that Ψ is a local di�eo-
morphism when restricted to a (possibly small) open neighborhood V of 0. Since 0 ∈ ϕ′(U ′) and
Ψ(0) = 0 (according to Condition 1), by possibly choosing V even smaller, we can guarantee that
Ψ(V) ⊂ ϕ′(U ′); hence V i ◦ (ϕ′)−1 ◦ Ψ (in the statement of Condition 3) would be a well de�ned
function on V .

In order to construct a local di�eomorphism Ψ as above, we will make use of the �ow map
associated to the vector �eld V̄ = (V 1 ◦ (ϕ′)−1, . . . , V n ◦ (ϕ′)−1) on ϕ′(U ′) ⊂ R

n (note that this is
simply the pushforward of the vector �eld V via the map ϕ′). For a smooth vector �eld V̄ de�ned
on an open domain Ω of Rn, the classical theory of ODEs guarantees the existence of an open set
Ω ⊂ R× Ω containing {0} × Ω and a smooth map Ψ̃ : Ω → Ω such that{

∂tΨ̃(t; x̄) = V̄ (Ψ̃(t; x̄)),

Ψ̃(0; x̄) = x̄.
(12)

(this statetement can be equivalently stated in a more familiar language as follows: The initial value
problem {

∂tx = V̄ (x),

x(0) = x0 ∈ Ω

admits a unique smooth solution x[x0, ·] : Ix0 → Ω on a maximal open interval Ix0 ⊆ R containing 0;
moreover, x[x0, ·] and Ix0 depend smoothly on the initial value x0.)

1Recall that, in this case, xi = (Ψ−1)i ◦ ϕ′; thus, yi = (ϕ′)i = (Ψ ◦Ψ−1 ◦ ϕ′)i = (Ψ(x))i.
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Let Ψ̃ : Ω → R
n be the map obtained by applying the above result with Ω = ϕ′(U ′). Let δ > 0

be small enough so that (−δ, δ) × Bδ[0] ⊂ Ω (where B
(n)
δ [0] is the Euclidean ball around 0 ∈ R

n of

radius δ). Let us consider the map Ψ : (−δ, δ)×B
(n−1)
δ [0] → R

n de�ned by

Ψ(x1, . . . , xn) = Ψ̃(x1; 0, x2, . . . , xn)

(this is simply the map that takes each point on the surface {x̄1 = 0} ∩ Bδ[0]
(n) and maps it to its

image under the �ow of the vector �eld V̄ for time t = x1). In view of (12), we can readily compute:

1. Ψ(0) = Ψ̃(0; 0) = 0.

2. We can calculate at (x1, . . . , xn) = (0, . . . , 0):

∂1Ψ
j(0) = ∂tΨ̃

j(t; x̄1, . . . , xn)|(t;x̄1,...,xn)=(0;0,...,0) = V̄ j(0) for j = 1, . . . , n

and, for i ⩾ 2:

∂iΨ
j(0) = ∂x̄iΨ̃j(t; x̄1, . . . , xn)|(t;x̄1,...,xn)=(0;0,...,0)

= δji .

Therefore, the matrix of the di�erential DΨ at 0 takes the form

[DΨ]|x=0 =


V̄ 1(0) V̄ 2(0) . . . V̄ n(0)
1 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1

 ,

which is invertible since V̄ 1(0) = V 1(p) ̸= 0.

3. We have everywhere on (−δ, δ)×B
(n−1)
δ [0]:

∂1Ψ(x1, . . . , xn) = ∂tΨ̃(t; x̄1, . . . , x̄n)|(t;x̄1,x̄2,...,x̄n)=(x1;0,x2,...,xn)

= V̄
(
Ψ̃(x1; 0, x2, . . . , xn)

)
= V̄

(
Ψ(x1, . . . , xn)

and, hence
∂1Ψ

i = V̄ i ◦Ψ = V i ◦ (ϕ′)−1 ◦Ψ.

Therefore, setting V .
= (−δ, δ)×B

(n−1)
δ [0], the map Ψ de�ned above satis�es Conditions 1�3; hence,

as explained earlier, ϕ = Ψ−1 ◦ ϕ′ : (ϕ′)−1(Ψ(V)) ⊂ U ′ → V is a coordinate chart around p in which

∂

∂x1
= V.
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1.5 Let X, Y, Z be smooth vector �elds on a di�erentiable manifold M. We de�ne the commutator
(or Lie bracket) [X, Y ] of X and Y to be the vector �eld satisfying for any function f ∈ C∞(M)

[X, Y ](f) = X(Y (f))− Y (X(f)).

(a) Show that [X, Y ] satis�es the following identities:

1. [X, Y ] = −[Y,X] (anticommutativity).

2. [X, aY + bZ] = a[X, Y ] + b[X,Z] for any constans a, b (linearity).

3. [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity).

(b) Let Xa and Y b be the components of X and Y , respectively, in a local coordinate chart
(x1, . . . , xn) on M (i.e. X = Xa ∂

∂xa and Y = Y a ∂
∂xa ). Compute the components of [X, Y ]

in the same coordinate chart.

Solution. (a) Let us �rst verify that indeed [X, Y ] is a vector �eld on M (recall that a vector
�eld Z is simply an assignment p → Zp for all p ∈ M such that Zp : C∞(M) → R is a linear
functional satisfying the product rule; note that, for any f ∈ C∞(M), Z(f) then de�nes a smooth
function p→ Zp(f)). To this end, we simply have to verify that, for any point p ∈ M, the functional
[X, Y ]p : C

∞(M) → R de�ned by

[X, Y ]p(f) = Xp(Y (f))− Yp(X(f))

is linear (which is obvious) and satis�es the product rule. Indeed, for any f, h ∈ C∞(M):

[X, Y ]p(f · h) = Xp(Y (f · h))− Yp(X(f · h))
= Xp

(
Y (f) · h+ f · Y (h)

)
− Yp

(
X(f) · h+ f ·X(h)

)
= Xp(Y (f)) · h(p) + Yp(f) ·Xp(h) +Xp(f)Yp(h) + f(p)Xp(Y (h))

− Yp(X(f)) · h(p)−Xp(f) · Yp(h)− Yp(f)Xp(h)− f(p)Yp(X(h))

=
(
Xp(Y (f))− Yp(X(f))

)
· h(p) + f(p) ·

(
Xp(Y (h))− Yp(X(h))

)
,

where, above, we made use of the fact that the functionals X, Y : C∞(M) → C∞(M) and Xp, Yp :
C∞(M) → R satisfy the product rule.

Identities 1�3 follow easily by using the de�nition of [X, Y ] and the fact that any vector �eld
X on M de�nes a linear function X : C∞(M) → C∞(M) satisfying the product rule X(f · g) =
X(f) · g + f ·X(g).

(b) We can readily calculate in the (x1, . . . , xn) coordinates:

[X, Y ]i = [X, Y ](xi)

= X(Y (xi))− Y (X(xi))

= X
(
Y j ∂x

j

∂xj

)
− Y

(
Xj ∂x

j

∂xj

)
= X(Y i)− Y (X i)

= Xj ∂Y
i

∂xj
− Y j ∂X

i

∂xj
.
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